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Nikolai [ 1,2 I formulated and solved the problem of the motion of a 

stabilized gyroscope in a Cardan suspension taking into account the 

effect of constant frictional moments at the suspension axes. The motion 

of an astatic gyroscope in a Cardan suspension on a fixed base is studied 

below. It is assumed that there are frictional forces at the axes of the 

suspension, the magnitudes of which are proportional to the normals form- 

ing the dynamic reactions. Some results have been published earlier [ 3 I. 

1. Derivation of the equations of motion for the gyroscope. Let us 

associate the system of coordinates 5~ (’ with the space at rest, the 

system of coordinates xl, yl, zl with the outer ring, and x2, yz, z2 with 

the inner ring; furthermore, the axis of rotation for the outer ring CO- 

incides with the axis t, the axis yl with the axis of rotation of the 

inner ring, the axis z2 with the rotational axis of the rotor. The loca- 

tion of the gyroscopic system will be denoted by the angles a, @ and 4, 

the sense of which is shown in Fig. 1. 

Let us denote the moment of inertia of the outer ring about the axis 

of its rotation by Al, the moments of inertia of the inner rings about 

the axes x2yz~2 by A2B2C2,the equatorial and polar moments of inertia of 

the rotor by A and C. Denoting the projection of the NWIlar VelOCitY of 

the outer ring on the axes x2, y2, z2 by p2, q2, r2, the projection of 

the angular velocity of the rotor on the same axes by p, q, r, we have 

p2 = a' cos fJ, p = a’ cos p 

p1 = a’, qs = p’s 4= P’ 
r2 = a’sin p, r = cp’ + a’ sin fi 

( 
&< = 2, p’ = g , ($’ = 2) 

(1.1) 
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Fig. 1. 

Denoting. finally, bY Kxlt iI yl’ 11Zl the sums of the moments of forces 

of base reactions with respect to the axes x1, yl, zl, by Lzl, L 1, LE1 

the sums of the moments of forces acting on the inner ring from e he side 

of the outer ring, by Ms2, My2, MZ2 the moments exerted by the inner ring 

on the rotor [4 ] : 

Then, utilizing (1.1) we will obtain the system of equations describ- 
ing the motion of the outer ring, the inner ring and the rotor: 

Ala” = K,, - LxI, 0 = K,, - Ltl,, 0 = K,, - Lzi 

A,a” cos p - (AZ + B2 - C,) a’$’ sin j3 = L, cos B - L,% sin $ - M, 

B&i” + (AZ - C,) at2 sin p cos p = L, - M, 

Cza” sin p -j- (C, + Bz - A,) a’fi’ DOS B = L,. sin @ + Lzl cos fl - M,ll 

Au” cos p + H/3’ - Ua’$’ sin fi = M,. 

if.21 

A$” f Aat sin fi cos B - Ha’ GOS @ = Mu2 

2 [C (v’ + a’ sin @)I = ‘7: = MzI 

Let us consider the forces of interaction between the base and the 
outer ring. Let us assume that the journal and the bearing in crosa- 
section, perpendicular to the axis of rotation, represent two circles, 
the radii of which differ insignific~t~y, Figure 2 shows the cross- 
section of the outer ring bearing located on the positive part of the 
axis x1, The normal force of the base reaction on the outer ring is de- 
noted by Rr, where RI Z+ 0; the friction force F, = flRl is directed Per- 
pendicularly toward R1 and hinders the rotation of the outer ring. The 
forces in the second bearing have the same magnitudes but opposite 
directions. 

We will assume that the axis of outer ring rotation is directed 
vertically; then, denoting by r1 the radius of the bearing, by 1, the 
length of outer ring axis, we have 
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K,, = - (2fmRl + Kxl*) signa’ 

%I, = -R111 (sin a1 + fl cos 81 sign a’) 

K,, = RIZI (CW 91 - flsin81 signa’) 

(1.3) 

where Kxl* is the moment of rotational friction dependent on the force 

of gravity. Because the axis of the outer ring is directed vertically, 

gravity has no effect on RI. 

Let us pass now to the consideration of reaction forces of the outer 

ring on the inner ring. The cross-sections of the bearings located on 

the positive and negative sides of the axis y1 are shown in Figs. 3 and 4. 

Utilizing the given notationswe will get 

Lx1 = R21 (COS 921- fzl sin 821 sign St)+ + Rzz (cm s,, + fz sin a22 sign p’) $- 

Lv, = -fzrz &I + RN) sign fi’ (1.4) 

Lz1 = -R21 (sin *21 -k fzl COS -%I sign p’) $ + R2* (sin l&, - fz ~0s a,, sign f~‘) -$ 

Here r2 is the radius of the bearing and 1, the length of the inner 

ring axis. 

Fig. 2. Fig. 3. Fig. 4. 

Denoting the weight of the rotor and of the inner ring by P and pro- 

jecting the forces acting on the inner ring on the axes x1 and zl, we 

have 

R21 (sina + f2 ~0~421 sign fi’) + Rz2 (sin%, - fz cos S,, signp’) = P 

R21 (cos a21 - fi sin $21 sign @‘) - Rz2 (cos 8,~ + fi sin &,22 sign p’) = @ (1.5) 

Using (1.2) to (1.5), we obtain a system of equations describing the 
motion of the gyroscope in a Cardan suspension with dry friction: 

Ala” = - (2flrl + Kx,‘) sign a’ - R~I (cos 9,, - fz sn ,ysl sign ~7) l2 (1 J-5) 
0 = -Rib (Sin 191 + Ii Cos 81 sign a’) _1- jzr2 (Rzl + Rz2) sign 6’ (1.7) 
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0 = Rlk (~0s % - fl sin $1 signa’) + R,I (sin a21 + fi cos 8,x sign 8’) lz _ 1,!~p4 (1.8) 

As” cos fi - (AZ + Ba - C,) a’fi’ sin B = R21 (cos 421 - f2 sin a,1 sign 0’) Iz ~0s p + 

+ %I (sin %I + h cos 821 sign fi’) - l/z~~ z2 sin fi - ~~~ (1.9) 

B2p” -I- (A2 - GJ a’2 sin B cos b = - f2r2 (Rzl + R,~) sign p9 _ M,: (1.10) 

Go” sin B + (Cz + & - AZ) a’@ ‘Cos fi = Rsi (Cos 821 - f2 sin as1 sign p’) &, sin fJ _ 

- W21 (sin a21 -I- f2 cos s21 sign @‘) - 11% PI is cos fi - M,* (1.11) 

AU” cos p + HP - 2Aa’fi’ sin p = 1~~~ (1.12) 

AB” + ActI sin p cos p - HCZ’ cos $ = J& (1.13) 

dH 
dt = iMzz (1.14) 

These sould be supplemented with the relations (1.5). 

2. Motion of the gyroscope under the action of a constant moment. We 
will consider the motion of a gyroscope under 
moment outside the gravity field (the case of 
external influences is presented in [3 I ). 

Let us assume that there is no friction on 
M 22 = 0, and the constant moment M is applied 
axis. From (1.14) we find that H = const. 

the action of a constant 
motion in the absence of 

the rotor axis, i.e. 
to the outer ring along its 

Since P = 0, then from fl. 5) it can be seen that Rgl = R22. 

We will assume that the angles a, @ and the angular velocitiBs a’, @’ 
are Small quantities and will neglect their squares, products and terms 
of the order a’!@ Then, for example, 

MXz = Au” + HP’, M2% sin fi z. (Au” + HP’) f3 z 0. 

Using (1.9) to (1.13) we obtain 

R,I (cos 8,~ - f2 sin 8,1 sign p’) Z2 = (A + AZ) a” + Hj3’ 

-2f2rsRzl sign $’ = (A + B2) #I” - Ha’ 

R21 (sin a21 + k cos 4* sign fl’) E2 = 0 

Squaring the first and the third equation of the last system and add- 
ing them we have 

Rzl = 
1 

____ 
22 u’l + f22 

I (A + -42) a” + W3’ I 

After eliminating Rzl we find 

(A + B2) p” - Ha = - I .,,,?&$? 1 (-4 + AZ) ct” + HP’ / sign fi’ (2.f) 
2 
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Eliminating R, and 41 from Equations (1.6) to (1.8). we obtain 

(A + -4+4 a”+fw = - z 

1 
/ (A + Bz) fI” - Ha’ j signa’ + M (2.2) 

Let us introduce 

a' = x, B’ = Y, A +A1 +A2 = Zl, A + -42 = 127 A + B2 = Ia 
2fln 2far2 

11 vi + fl" 

= al> 0, -=az>O 
12 I/?--t f2 

Equations (2.1) and (2.2) can be rewritten in the following form: 

Zlx’ + Hy = -al 1 I3y’ - Hz 1 sign x + M 

Zsy’ - Hx = -a3 1 13x’ + Hy 1 sign y (2.3) 

The first equation of the system (2.3) can be put into the form 

Whence 

ZKC’ + Hy = -u1u2 I Z2x’ + Hy I sign x + M 

x’ = 
M - (1 f ala3 sign x) Hy plus for Zzx’ + Hy > 0 

II f alazIz sign x minus for 12~' + Hy < 0 

Taking into account (2.5) we obtain 

ZG’ + HY > 0 
MZz + -4Hy 

for Y > y. 

12x’ + Hy = II + ala21zsignx ’ Or 
Izx’ + Hy=O for y=yo Yo = 
I& + Hy < 0 for y < y. 

- 

(2.4) 

(2.5) 

12 M -- 

-% H 

Let us consider the motion of a representative point Q(x, y) on the 
plane of the angular velocities y, X, introduced by Nikolai. 

Equation (2.3) shows that the plane of Nikolai can be split into six 

regions in each of which the motion of the gyroscope is described by 
linear equations. In each region these equations can be reduced by trans- 
formation of coordinates to the equation of the form 

dy -= -_m. - 
dx tikni (i = 1.2) 

in which 

II+ ada 
nL1 = Is (I+ a1az) ’ 

II- ala212 
ma = I3 (I- a&F) ’ 

@Al aA 
nl= Is(l+ a1a2)' n2 = I3 (I--uala2) 

From Equation (2.6) it follows that the motion of the representative 
point occurs along deformed logarithmic spirals (Fig. 5). the centers of 
which correspond to the six regions of the Nikolai plane. 
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Region 

I (z > 0, y > 0) 

Spiral Centers 

01 
a2 M 1 M 

IfalazH'1+alaz > 

II 

III 

at M 1 M- ____- ~- 
I- ala2 II 1 -ala2 H ) 

a2 M 1 M ___- ~- 
I-- ala2 H ’ i- alaa H 

IV (r < 0, Y < Yo) 
l+alazH lfalaz 

V (z > 0, Y < Yo) 

VI (z>O, Yo<Y<O) 

Let us consider the passing of the representative point through the 
coordinate axes. If the representative point crosses the y-axis then the 
angular velocity of the outer ring a'.= x vanishes and in accordance with 
Equation (2.4) there may be two cases: 

(1) I M - HY I > al=z I Iax’ + HY I, 2’ f0, 

the representative point passes across the y-axis; 

(2) IM-H~I\(alazIHyl, x’ = 0 

the representative point slides along the y-axis. The slide region is de- 
fined by the inequality 

1 M 
Yl e Y < Ya 

1 M 
yl=-$-2TH’ yn==-_alaz 

The pattern of motion of the representative point verifies the exist- 
ence of the slide region on the y-axis. Indeed, from (2.4) it is seen that 
if x > 0, y = yl, then x’.= 0; if x < 0, y = yq, then also I’.= 0. The 
straight lines x’.= 0 are shown in Fig. 6 by dotted lines. Above the 
dotted lines the motion of the representative point occurs from left to 
right. The region y1y2 attracts the representative point by the only 
possible motion which is sliding along the y-axis towards the origin of 
the coordinates. 

Analogous reasoning shows that the slide region exists on the x-axis 
(Fig. 6) and is defined by the inequality 

Xl < x < 22 
ZaM IZM 

x1 = - *’ (I, - alatlz) H ’ x2 = a’ (Zr + alazZz) H > 

At the point X* the representative point leaves the x-axis. Passes into 
the region I and with increasing time approaches O1 asymptotically. Thus, 
after the transient process dies down in the system, two constant angular 
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velocities are established: 

Let us assume now that an external constant moment L 

a ’ = L/H. In this case the slide regions 

of the representative point along the coordinate axes are non-existent. 

3. On the motion of a heavy gyroscope. Let us assume again that 
M 

22 = 0, H = const and consider the motion of a heavy gyroscope, re- 

tricting ourselves to the case of small angles and small velocities. From 

(1.11) and (1.5) it can be seen that 

Rzl (sin Q2i + jz cos Qzl sign p’) = R2s (sin 3~2 - fz cos 3,, sign p’) = c , or Rzl = llz2 

Using Equations (1.9) to (1.13) and the last relationship we find 

L,, = Rzl (cos a21 - fZ sin 3~ sign p’) l2 = (A + n,) off _I_ HP’ 

L,, = - 2fzrzRzl sign p’ = (A + B,) p” - Ha’ 

Lzi = 
I 

-$ - R21 (sin 8,1 + fz cos 8,1 sign fl’) Z2 = 0 
3 

Let US introduce the notation l/2 PI, = 111. Then eliminating R,, 
we have 

and Qzl, 

(A + &) p” - Ha’ = -a2 l/G? + [(A + A,) a” + Hf3’12 sign p’ (3. I) 

We Will assume that the bearings of the outer ring are designed in 

such a way that the moment Kzl* due to rotating friction dependent on 
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gravity can be neglected. 

After eliminating RI and 81 from Equations (1.6) to (1.8). we obtain 

(A _t Al + A,) cc” + HP = - al j (A + &) p” - Ha’ 1 sign cc’ (3.2 

Utilizing the notation from the previous section, we write Equations 
(3.1) and (3.2) in the following form: 

zlx’ + ~~ = - alap Jfm2 + (12x’ + HyJ2 sign x 

Z3Y’ - ZZx z - a2 v/mz + (Zpx’ - Hy)” sign y 

(3.3) 

First consider the case when, due to smallness of friction, one can 
neglect the right-hand side of the first equation in system (3.3). Then 

H 
x' = -- y, 

11 
IBy’ - Hx = - a2 vrnz + 112H2y2 sign y ( Al\ 

n=-I 
-I1 / 

whence 

dy 11 Hz - a2 v/m2 + rGfZ2y2 sign y - 
dx 

z- - 
13 HY 

Integrating this equation we will obtain 

In (11~~ + nzy2 - a2bx 1/ ml2 + n2y2 sign y + bx”) = 

a2b sign y 
D- P 

tan-l 2’1/ ml2 + n2y2 - azbx sign y 

2Px 

ml= c4_ H, b=n+, 
a22b2 

“2 = b - - 
4 

Here D is an arbitrary constant. 

Consider the crossing of the representative point of the coordinate 
axes. From the first equation of system (3.3) we have 

H 
x’ = - - y - _%?f~? Jfrn2 $ (Zzx’ + Hy)z sign x 

11 11 

Substituting x’.into the second equation we will obtain 

n2H2y2 - ala2 -$ v/m2 + (Z2z’ + HY)~ sign I 
2 ‘It >I sign y 

Let the bearing friction on the axes of the suspension be so small 
that the terms multiplied by alax may be neglected. Then (3.3) becomes 
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ISy’ - Hx = - a2 1/m2 + n2Haya sign y 
(3.4) 

I1x’ + Hy = - ala2 t/ m2 + n2H2y%ign x 

It is easy to see that there is on the x-axis a slide region for the 
representative point defined by the inequality 1 XI < aZm/H tending to- 
wards the origin of the coordinates. Imagine that at the beginning of 
motion the representative point was located on the boundary of this 
region, i. e. 

B = 0, 
m 

u = ao, - a’=x=a2 H, f3’ = 0 for t = 0. 

The representative point will move further along the x-axis; therefore 
the inner ring remains immovable relative to the outer ring. The velocity 
of the latter is defined by the formula 

m 
a’ = US - - H ala Et 

2 II 

Equating a’- to zero, we find the time of motion r 1 of the gyroscope 

During this time the deviation along the outer ring axis attains the 
magnitude 

m 
a=: a23 

Example. Let there be given a gyroscope with the following parameters: 

I1 = 11 g cm set’, P = 300 g, 1 = 5 cm, H = 7500 g cm sec. al = a2 

The deviation with respect to a for this gyroscope during the slide 
time of the representative point along the x-axis attains 0.25’. 

The slide region on the y-axis is determined by the inequality 

m 

The deviation of the gyroscope with respect to the angle p during the 
sliding of the representative point on the y-axis is quite negligible. 

In conclusion the author expresses his deep gratitude to A.Iu. 
Ishlinskii for his guidance in preparation of this work. 
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